Improved hybrid solar cells via in situ UV polymerization.

نویسندگان

  • Sanja Tepavcevic
  • Seth B Darling
  • Nada M Dimitrijevic
  • Tijana Rajh
  • Steven J Sibener
چکیده

One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO(2) nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO(2) NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO(2) substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C--I bond produces monomer radicals with intact pi-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO(2) surface via a charge transfer complex. Coupling with the TiO(2) surface improves UV-PT crystallinity and pi-pi stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of approximately 5 microA cm(2)-surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO(2) surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Hybrid Organic-Inorganic Photovoltaics via In Situ UV-Polymerization in Nanotube Arrays

Research Achievement Hybrid solar cells have been developed in the past decade as a promising alternative for traditional silicon-based solar cells. One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill nanostructured titania films with solid organic hole conductors such as conjugated polymers. These compounds can function as light-absorbing species and...

متن کامل

New high-efficiency protective coating containing glycidyl-POSS nanocage for improvement of solar cell electrical parameters

Various antireflection thin films are often used to cover glass to increase solar cell electrical parameters. In the recent years many efforts have been done to develop and improve of solar cell films with high electrical output. One of the most important challenges of obtaining of high-efficiency thin films of solar cells is creation an effective light trapping system. The new polymeric protec...

متن کامل

Synthesis and Characterization of Polyaniline-Polystyrene-Chitosan/Zinc Oxide Hybrid Nanocomposite

A hybrid nanocomposite composed of polyaniline-polystyrene-chitosan/zinc oxide was prepared via a simple in situ polymerization method. The synthesized copolymers were analyzed using Fourier Transform InfraRed (FT-IR), and UltraViolet-Visible (UV–Vis) spectroscopies, ThermoGravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffracti...

متن کامل

In Situ Chemical Oxidative Graft Polymerization of Aniline from Fe3O4 Nanoparticles

This study aims at exploring an effective route in the in situ graft polymerization of aniline from Fe3O4 nanoparticles. To this goal, Fe3O4 magnetic nanoparticles were prepared by coprecipitation method using ammonia solution as the precipitating agent, and were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM)....

متن کامل

Preparation of Flame Retardant Polystyrene via In-Situ Bulk Polymerization Method and Evaluation of its Flammability Properties

In this study, in-situ bulk polymerization was investigated for obtaining flame retardant polystyrene (PS). The halogenated and phosphoric compounds were used as flame retardant additives and Perkadox 30 was used as a synergist. The flammability of the PS was evaluated by thermogravimetric analyzer (TGA), limiting oxygen index (LOI) and UL-94 tests. The results show that polymerization process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 5 15  شماره 

صفحات  -

تاریخ انتشار 2009